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Abstract 

Background:  The diagnostic journey for many rare disease patients remains challenging despite use of latest genetic 
technological advancements. We hypothesize that some patients remain undiagnosed due to more complex diag‑
nostic scenarios that are currently not considered in genome analysis pipelines. To better understand this, we char‑
acterized the rare disorder (RD) spectrum using various bioinformatics resources (e.g., Orphanet/Orphadata, Human 
Phenotype Ontology, Reactome pathways) combined with custom-made R scripts.

Results:  Our in silico characterization led to identification of 145 borderline-common, 412 rare and 2967 ultra-rare 
disorders. Based on these findings and point prevalence, we would expect that approximately 6.53%, 0.34%, and 
0.30% of individuals in a randomly selected population have a borderline-common, rare, and ultra-rare disorder, 
respectively (equaling to 1 RD patient in 14 people). Importantly, our analyses revealed that (1) a higher proportion 
of borderline-common disorders were caused by multiple gene defects and/or other factors compared with the rare 
and ultra-rare disorders, (2) the phenotypic expressivity was more variable for the borderline-common disorders than 
for the rarer disorders, and (3) unique clinical characteristics were observed across the disorder categories forming the 
spectrum.

Conclusions:  Recognizing that RD patients who remain unsolved even after genome sequencing might belong 
to the more common end of the RD spectrum support the usage of computational pipelines that account for more 
complex genetic and phenotypic scenarios.
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Background
Rare disease diagnostic timeliness and accuracy are still 
suboptimal, in spite of technological inventions of the 
twenty-first century. High-throughput sequencing has 
led to considerable progress in rare disease diagnostics 
and discovery [1], yet it takes on average eight years to 
get accurately diagnosed with a couple of misdiagnoses 

along the way [2]. For some patients it has even taken 
up to 30 years to get an etiologic diagnosis while others 
remain throughout their life without a definite diagno-
sis [3]. Gilissen and colleagues reported a 42% diagnos-
tic rate using whole genome sequencing and a trio-based 
design (based on 50 patients with severe intellectual 
disability and their unaffected parents) [4–6]. There are 
numerous reasons why health professionals are unable to 
establish accurate diagnoses for the patients under inves-
tigation. A source of diagnostic errors is ‘no-fault errors’ 
which can arise if the disease representation is atypical 
or masked [7, 8]. Incomplete penetrance and variable 
expressivity (sometimes referred to as non-Mendelian 
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phenomena) are believed to be the underlying factors 
behind this observation [9–11]. Other examples of fac-
tors that can result in diagnostic errors are low read 
depth in the genetic region of interest, relatively high 
allele frequencies in a reference population, existence of 
allelic imbalance/mosaicism, the causative variant being 
inherited from an unaffected parent, faulty pathogenicity 
predictions using computational tools, or the condition 
not being genetically inherited (e.g. arise from imprint-
ing) [12].

This is where the concept of missing heritability comes 
in—often used in the context of common disease. Miss-
ing heritability refers to the fraction of heritability that 
we have not yet been able to explain using state-of-
the-art methodologies. Kong stated that “it is reason-
able to assume that complex inheritance as a whole could 
account for a substantial fraction of heritability” [13]. 
This was discussed by Maroilley and Tarailo-Graovac in 
2019 but focusing on rare disease [14]. Approximately 
80% of rare diseases are estimated to have a genetic ori-
gin. These rare diseases may suffer from missing herit-
ability [15, 16]. One question worth asking is, how can we 
explain the missing heritability that might be the cause of 
the challenges we are facing in rare disease diagnostics? 
Some of the missing heritability might be explained by 
more complex genetic scenarios such as the implication 
of structural and other complex variants or multigenic 
inheritance of rare diseases rather than the conserva-
tive ‘one-causative-gene’-approach. By considering more 
complex genetic scenarios in computational pipelines 
focused on rare disease diagnostics, we might be able to 
explain some of the missing heritability. Additionally, uti-
lization of phenomics (the acquiring of high-dimensional 
phenotypic data) [17] could also be useful in addressing 
variable expressivity and incomplete penetrance as well 
as their impact on diagnostic rates. Computational pipe-
lines are not currently geared to address more complex 
genetic and phenotypic scenarios, and negate the whole 
palette of rare diseases (e.g., some rare diseases are more 
common than others) and thus the underlying genetic 
architecture might differ. This consideration is based on 
our knowledge that common diseases are considered 
polygenic and multifactorial.

Mendelian diseases are diseases “for which alternative 
genotypes fall into distinct, discrete phenotypic classes, 
following Gregor Mendel’s laws of inheritance” [18], which 
mostly concern monogenic rare diseases [19]. For these 
rare diseases, we expect strong penetrance and invariable 
expressivity in contrast to the multifactorial common dis-
eases. However, these disease groups represent two broad 
categories rather than all diseases along the spectrum. 
Importantly, researchers have started to pay more atten-
tion to digenic and oligogenic inheritance underlying 

rare diseases as well as interactions and genetic modifi-
ers over the past decade [20–24]. This has led to many 
new discoveries and developments such as the DIgenic 
diseases DAtabase (DIDA) [25], the Oligogenic Resource 
for Variant AnaLysis (ORVAL) [26], an interactome-
based platform [27], and the genetic modifier data-
base, PhenoModifier [28]. Focusing on well-established 
resources, DatabasE of genomiC varIation and Pheno-
type in Humans using Ensembl Resource (DECIPHER) 
[29], genome aggregation database (gnomAD) [30] and 
ClinVar [31] have greatly benefited health profession-
als working with rare disease diagnostics and therefore 
the patients who seek clarity regarding their health con-
cerns. Nevertheless, the analytical methods available 
have various limitations [32], which might delay an accu-
rate diagnosis and optimal treatment. Another potential 
reason for diagnostic failure is that those methods have 
been developed generally with the purpose of diagnosing 
either rare or common diseases rather than considering 
the entire disease spectrum.

This brings up the question: Where does the line go 
between rare and common? Even though it may seem 
like a simple question, it has caused a lot of debate. The 
most widely accepted international definitions for a rare 
disease in terms of prevalence are (1) less than 1 in 2000 
people in the European Union (https://​ec.​europa.​eu/), 
and (2) less than 200,000 people in the United States of 
America (defined in the Orphan Drug Act). Neverthe-
less, Richter et  al. [33] identified almost 300 different 
rare disease definitions from various organizations and 
found that the most broadly used prevalence thresh-
old was 40–50 cases per 100,000 people. Moreover, the 
prevalence for ultra-rare diseases has been reported to be 
less than 1 case per 1,000,000 people [34]. We used these 
thresholds as pin pointers to dissect the range of the 
disorder spectrum considered as rare, and refer to rare 
disorders as borderline-common, rare, and ultra-rare (a 
spectrum ranging from a point prevalence of 6–9/10,000 
to < 1/1,000,000). More recently, focus has changed from 
asking “Is it rare?” to “How rare is it?” as phrased by 
Jason et  al. [35] Therefore, the overall aim of this study 
was to characterize the RD spectrum. We expect that 
understanding the characteristics of disorders across the 
spectrum will help us to categorize ‘difficult-to-diagnose’ 
patients to specific disorder categories, which can pro-
vide guidance on the selection of most appropriate ana-
lytical methods for the patient under investigation. This 
is of particular importance in the Silent Genomes where 
many of the enrolled Indigenous patients with suspected 
genetic conditions remain undiagnosed even after whole 
genome sequencing, as well as for other ‘difficult-to-
diagnose’ RD patients. We hypothesize that multiple 
undiagnosed patients with rare conditions belong to the 

https://ec.europa.eu/
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less rare end of the RD spectrum and thus their pheno-
type representations can be explained by more complex 
genetic scenarios (e.g., it is well known that common dis-
orders are multigenic/multifactorial).

Results
Our characterization of the RD spectrum, focusing on a 
wide range of factors ranging from disorder types to asso-
ciated HPO terms and genes, is summarized in Fig. 1.

Borderline‑common disorders only comprise 4% 
of disorders in the spectrum yet represented more 
than 90% of patients in a fictive rare disorder cohort
Worldwide and/or continent point prevalence were 
reported for 3,524 RDs in Orphadata (Additional File 1: 
Fig. S1). By focusing on worldwide and continent point 
prevalence, we believe that the issue of founder and con-
sanguinity effects were eliminated. In agreement, none 
of the included RDs had a prevalence of more than 1 
case per 1,000 people (one of the prevalence categories 
in Orphanet), which mainly was observed in specific 
regions or for specific populations (e.g., French Canadi-
ans of Quebec, Canadian Indigenous Peoples).

Most RDs belonged to the ultra-rare disorder cat-
egory (RD = 2967, 84.2%) followed by the disorder cat-
egories rare (RD = 412, 11.7%) and borderline-common 

(RD = 145, 4.1%; Fig. 2A). When considering both point 
prevalence (midpoint) and number of RDs, it translates 
into approximately 0.30%, 0.34%, and 6.5% of them hav-
ing an ultra-rare, rare, and borderline-common disorder 
in a randomly selected population, respectively (Fig. 2B). 
Thus, it is expected that 33 people have a borderline-
common disorder, 2 people have a rare disorder and 1 
person has an ultra-rare disorder in a population of 500 
randomly selected people (Fig.  2B). This equals to 1 in 
14 people living with a RD (i.e., 500/36 ≈ 14), all catego-
ries considered. By focusing solely on the predicted RD 
patients within this fictive population, we can appreciate 
that borderline-common disorders are more prevalent 
than rare and ultra-rare disorders and may represent a 
substantial portion of an undiagnosed cohort (Fig.  2C, 
Additional File 2: Table S2).

A higher proportion of borderline‑common disorders 
have a more complex genetic inheritance than rare 
and ultra‑rare disorders
Understanding how disorders are inherited can pro-
vide us with information about how to tailor our diag-
nostic computational pipelines. Assigning inheritance 
type to the disorders in Orphanet is based on evidence 
and expert knowledge. Using Orphadata, we identified 
nine different inheritance types (Table 1). Across the RD 

Fig. 1  Summary of findings for the rare disorder spectrum
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Fig. 2  Prevalence and natural history of borderline-common, rare, and ultra-rare disorders. A We identified 3,524 rare disorders (RDs) in the 
spectrum of which 4.1%, 11.7% and 84.2% belonged to the borderline-common, rare, and ultra-rare disorder category, respectively. B Prevalence 
of borderline-common, rare, and ultra-rare disorders in a randomly selected population. If taking point prevalence (midpoint) and number of 
RDs for each disorder category into consideration, this would result in 6.5%, 0.34% and 0.30% of individuals in a randomly selected population to 
have a borderline common, rare, and ultra-rare disorder, in turn. C If focusing solely on the group of RD patients within the population presented 
in Fig. 2B, 91.2% of them would have a borderline-common disorder. D The interval average age of onset and death for RDs within the spectrum 
were represented as proportions and standard errors. In total, 96.3% of the RDs had information about interval average age of onset, and 64.2% 
of the RDs had information about interval average age of death. Note that the percentages were calculated based on total count of RDs within 
each disorder category, as presented in Additional File 1: Fig. S1. For each level of age of onset (6 levels) and age of death (7 levels), we examined 
if the proportions for the borderline-common and rare disorder categories differed significantly from the ultra-rare disorder category and marked 
significant findings (*)
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spectrum, the proportion of RDs caused by autosomal 
recessive inheritance increased with increasing rarity, 
and the proportion of RDs caused by multigenic/multi-
factorial inheritance decreased with rarity. Interestingly, 
oligogenic inheritance was reported only for one RD 
within the rare disorder category, namely Bardet-Biedl 
syndrome [Orphacode:110]. We also found significantly 
more RDs within the rare disorder category caused by 
autosomal dominant inheritance when compared with 
the ultra-rare disorder category. Nevertheless, autosomal 
recessive inheritance (20.0–42.5%) and autosomal domi-
nant inheritance (25.5–32.3%) were the most common 

types of inheritance for each of the disorder categories. 
The proportion of ultra-rare disorders inherited in an 
autosomal recessive pattern was more than double the 
proportion of borderline-common disorders which could 
provide one explanation for the differences in disorder 
prevalence. For the borderline-common disorders, mul-
tigenic/ multifactorial inheritance also played a consider-
able role (14.5%) (Table 1).

The genes associated with the disorders are based 
on findings from peer-reviewed publications and bio-
marker testing practices, as carried out by Orphanet 
[36]. The genes reported in Orphadata [37] are not only 

Table 1  Summary of disorder types, linearisation parents and type of inheritance for the rare disorder spectrum

The rare disorder (RD) spectrum consists of 3,524 RDs of which 145, 412 and 2,967 RDs were categorized as borderline-common, rare, and ultra-rare, respectively. The 
proportions within the borderline-common and rare disorder categories were compared with those within the ultra-rare disorder category
a No RDs were categorized into the > 1/1000 prevalence group
b Direction of change of proportions from borderline-common to ultra-rare (D)
c Proportion (prop) was calculated based on total number of RDs within the disorder category
d FDR-adjusted p < 0.05 was considered statistically significant; NS refers to not significant
e Top 5 linearisation parents within the disorder category

Category Overalla Borderline-common Rare Ultra-rare Db

Measuresc Prop, % Prop, % Adj. p-valued Prop, % Adj. p-valued Prop, %

Disorder type
Disease 58.14 61.38 NS 76.70 1.06 × 10–16 55.41 –

Malformation syndrome 38.17 11.03 1.69 × 10–15 15.78 2.14 × 10–27 42.60 ↑
Morphological anomaly 2.36 11.72 4.13 × 10–09 4.37 9.97 × 10–04 1.62 ↓
Particular clinical situation in a disease or syndrome 0.88 13.79 6.32 × 10–26 2.43 1.08 × 10–08 0.03 ↓
Clinical syndrome 0.31 2.07 5.84 × 10–03 0.73 NS 0.17 ↓
Biological anomaly 0.14 – – – – 0.17 –

Top 10 linearisation parents for the RD spectrum
Rare developmental defect during embryogenesis 37.97 21.38e 7.75 × 10–06 21.12e 1.17 × 10–14 41.12e ↑
Rare neurologic disease 20.09 8.97e 9.59 × 10–04 22.82e NS 20.26e –

Rare inborn errors of metabolism 7.63 1.38 4.25 × 10–03 11.89e 9.34 × 10–03 7.35e –

Rare bone disease 7.49 1.38 1.68 × 10–03 4.37 1.05 × 10–02 8.22e ↑
Rare skin disease 5.56 5.52 NS 5.58e NS 5.56e –

Rare ophthalmic disorder 3.41 8.28e 3.48 × 10–03 5.10 4.64 × 10–02 2.93 ↓
Rare immune disease 3.15 0.69 NS 3.16 NS 3.27 –

Rare endocrine disease 2.95 6.90 7.76 × 10–03 4.85 2.13 × 10–02 2.49 ↓
Rare hematologic disease 2.89 8.28e 8.25 × 10–04 5.10 9.34 × 10–03 2.33 ↓
Rare systemic or rheumatologic disease 2.67 10.34e 2.31 × 10–06 6.31e 7.32 × 10–06 1.79 ↓
Type of inheritance
Autosomal recessive 41.23 20.00 1.31 × 10–07 39.81 NS 42.47 ↑
Autosomal dominant 26.39 28.97 NS 32.28 1.63 × 10–02 25.45 –

X-linked recessive 6.47 4.14 NS 8.74 NS 6.27 –

X-linked dominant 1.45 0.69 NS 1.94 NS 1.42 –

Mitochondrial inheritance 0.54 1.38 NS 1.21 NS 0.40 –

Semi-dominant 0.11 0.69 NS – – 0.10 –

Y-linked 0.06 0.69 NS – – 0.03 –

Oligogenic 0.03 – – 0.24 – – –

Multigenic/multifactorial 1.59 14.48 2.04 × 10–21 6.31 1.67 × 10–16 0.30 ↓
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disease-causing but also modifying or known to alter 
the susceptibility of the disorder. The number of genes 
associated with specific RDs increase, on average, with 
decreasing rarity [reported as median (IQR), 3 (6) causa-
tive genes for borderline-common disorders; 1 (2) causa-
tive genes for rare disorders; 1 (0) causative genes for 
ultra-rare disorders]. Focusing on associated genes, the 
mean ranks were significantly higher for borderline-
common and rare disorders as compared with ultra-rare 
disorders (Table 2), indicating more associated genes for 
these disorder categories.

Borderline‑common and rare disorders tend to be less life 
threatening and a higher proportion of those develop later 
in life than ultra‑rare disorders
During the diagnostic process, knowledge about inter-
val average age of onset and interval average age of death 
can help us to (1) exclude disorders without relevance 
to our patient assessment, (2) be informed about long-
term survival prospects for the patients under inves-
tigation, and (3) identify late onset disorders where 
predictions, addressing who is at risk, can be beneficial. 
Using Orphadata [37], more RDs within the spectrum 
had information about interval average age of onset than 
interval average age of death hence the differences in 
percentage magnitude in Fig.  2D between the two vari-
ables. It is also important to consider that information 
about interval average age of death were only available for 
64.2% of RDs in the spectrum.

Focusing on interval average age of onset (Fig.  2D), 
most RDs develop during infancy (4 weeks–23 months) 
or childhood (2–11 years) compared with the other age 
groups but is most pronounced for the ultra-rare disor-
ders. A higher proportion of RDs within the borderline-
common and rare disorder categories develop during 
adulthood (19–65 years), in elderly (after 65 years), and 
at all ages (from birth to adulthood) when compared 
with the ultra-rare disorder category. During adolescence 
(12–18 years), a higher proportion of RDs within the rare 
disorder category arise compared with the ultra-rare dis-
order category.

Focusing on interval average age of death (Fig.  2D), 
many RD patients can expect a normal life expectancy, 
especially those with a borderline-common or rare dis-
order. For example, a higher proportion of patients with 
a borderline-common or rare disorder have a normal life 
expectancy in relation to those with an ultra-rare disor-
der (Fig.  2). For a considerable proportion of ultra-rare 
disorders, death occurs during infancy or childhood. For 
the rare disorder category, death occurs more frequently 
during adolescence, in adulthood or in elderly when com-
pared with the other disorder categories. Death occur-
ring at any age has been reported for a larger proportion 
of borderline-common and rare disorders than ultra-rare 
disorders.

Interestingly, some of the enriched Reactome pathways 
unique to the ultra-rare disorder category are known to 
be essential for proper bodily functions (e.g., gene expres-
sion, translation, cell cycle; Figs.  3, 4). Our observation 
that pathways affecting essential bodily functions are 

Table 2  Occurrence of Human Phenotype Ontology (HPO) terms and disorder-associated genes across the rare disorder spectrum

A total of 2,430 rare disorders (RDs) had associated HPO terms based on Orphadata. Here, we provide counts of HPO terms for the rare disorders (RD) within the 
spectrum, including the ratio between them (the latter as measures of phenotypic expressivity). The measures of phenotypic expressivity are based on the HPO 
term occurrence within RDs. We also provide count of genes associated with the RDs. The mean ranks within the borderline-common (RD = 131) and rare (RD = 387) 
disorder categories were compared with those within the ultra-rare (RD = 1,912) disorder category; and the distributions are illustrated in Additional File 1: Fig. S5
a Direction of change of proportions from borderline-common to ultra-rare (D)
b FDR-adjusted p < 0.05 was considered statistically significant; NS refers to not significant
c HPO term occurrence: Obligate (100%), very frequent (99–80%), occasional (29–5%), very rare (< 4–1%). The percentages indicate how many patients with a certain 
RD who are expected to have the HPO term in question

Category Overall Borderline-common Rare Ultra-rare Da

Measures Median Median (IQR) Adj. p-valueb Median (IQR) Adj. p-valueb Median (IQR)

Disorder-associated genes per 
disorder
Associated genes 1 3 (6)  < 2.0 × 10–16 1 (2)  < 2.0 × 10–16 1 (0) ↓
HPO terms per disorderc

Count, HPO termtotal 20 17 (22) NS 24 (24) 1.9 × 10–06 19 (19) –

Count, HPO termobligate/very frequent 6  4 (25) 1.4 × 10–06 6 (8) NS 6 (8) –

Count, HPO termoccasional/very rare 8  9 (15) 4.1 × 10–02 10 (14) 2.4 × 10–06 7 (12) –

Ratio, HPO term (obligate/very frequent)/total 0.31  0.22 (0.36) 3.7 × 10–03 0.25 (0.33) 1.5 × 10–04 0.33 (0.56) ↑
Ratio, HPO term (occasional/very rare)/total 0.22  0.44 (0.38) 1.5 × 10–12 0.36 (0.38)  < 2.0 × 10–16 0.18 (0.42) ↓
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Fig. 3  Enriched Reactome pathways for the borderline-common, rare, and ultra-rare disorders. A, B The Venn diagrams illustrates the overlapping 
and non-overlapping enriched Reactome pathways between the borderline-common, rare, and ultra-rare disorder categories focusing on all and 
top 20 enriched Reactome pathways (Fig. 4). C Overview of the proportion (and standard error) of disorder-associated genes annotated to the 
enriched Reactome pathways in relation to the total number of disorder-associated genes for the disorder category in question. Eleven enriched 
Reactome pathways were found for each of the disorder categories
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involved in the development of some ultra-rare disorders 
agrees with our other finding that ultra-rare disorders are 
more life threatening.

The clinical characteristics tend to vary across the rare 
disorder spectrum
Next, we explored the clinical characteristics of each of 
those categories. The rare disorder category appeared to 
be an intermediate of the ultra-rare and borderline-com-
mon disorder categories in multiple instances (Tables 1, 
2, 3, Figs. 3B, 5A).

Focusing on the phenotypes observed for the RDs, 
HPO terms were assigned to 2430 out of the 3524 RDs 
forming the spectrum [38]. The top 5 HPO terms impli-
cated in the RDs were seizures, intellectual disability, 
short stature, global developmental delay, and micro-
cephaly (Table  3). Seizures and global developmental 
delay were highly co-occurrent (Fig.  5B); and global 
developmental delay was more often observed for RDs 
belonging to the rarer end of the spectrum (Table  3), 
which could reflect shared underlying pathophysiologi-
cal mechanisms. Our categorization of HPO terms to the 
disorder categories borderline-common, rare and ultra-
rare, and the HPO co-occurrence matrix can be found 
in Additional File 3. Subsets of the HPO co-occurrence 
matrix are visualized in Fig. 5B, C (enlarged in Additional 
File 1: Fig. S2-3).

Next, we conducted enrichment analyses of Reactome 
pathways among the disorder-associated genes from 
Orphadata [39] to learn more about how the phenotypes 
were manifested. This led to the identification of 26, 67 
and 215 enriched pathways for the borderline-com-
mon, rare, and ultra-rare disorder category, respectively 
(Fig.  3A, Additional File 2: Table  S3). Eleven enriched 
Reactome pathways overlapped between the three disor-
der categories (e.g., signal transduction, immune system, 
and developmental biology; Fig. 3C). Among the top 20 
enriched Reactome terms for each of the disorder catego-
ries (Fig. 4), pathways such as “gene expression” (R-HSA-
74160), “cell cycle” (R-HSA-1640170), “post-translational 
protein modification” (R-HSA-597592), “vesicle-medi-
ated transport” (R-HSA-5653656), and “translation” 
(R-HSA-72766) were specific to the ultra-rare disorders.

For each disorder category, the majority of the RDs 
were classified as a disease (55.4–76.7%; Table  1). The 

proportion of RDs classified as a morphological anom-
aly decreased with rarity, whereas the proportion of 
RDs classified as a malformation syndrome (defined by 
Orphanet as disorders “resulting from a developmental 
anomaly involving more than one morphogenetic field” 
[36]) increased with rarity (Table 1). Moreover, most RDs 
in the spectrum were classified as a rare developmental 
defect during embryogenesis, rare neurologic disease, or 
rare inborn errors of metabolism (Table  1). A consider-
able proportion of ultra-rare disorders was classified 
as a rare developmental defect during embryogenesis, 
which is related to the high proportion of malformation 
syndromes.

Some clinical characteristics are more prevalent 
among the borderline‑common disorders than the rare 
and ultra‑rare disorders
In our study, we found that only two HPO terms (sei-
zures and short stature) in top 15 for the entire RD 
spectrum overlapped with those in top 15 for the border-
line-common disorder category (Table  3). Our findings 
indicate that phenotypes observed for the borderline-
common disorders to some extent differ from the disor-
ders belonging to the other categories (Table  2, Fig.  5). 
The borderline-common disorders have more HPO 
terms in common with the rare disorders and less with 
the ultra-rare disorders (Fig.  5A). HPO terms such as 
headache, depressivity, hypertension and sleep distur-
bance were more prevalent in the borderline-common 
disorders (Fig. 5A, Table 3), suggesting that patients pre-
senting those phenotypes are more likely to be affected 
by a borderline-common type of disorder. Interestingly, 
by looking at the co-occurrence of HPO terms within the 
borderline-common category, depressivity tends to co-
occur with anxiety, and headache with seizures but also 
fatigue, and nausea and vomiting (Fig.  5C, Additional 
File 1: Fig. S4). A subset of the HPO term co-occurrence 
matrix, selected based on phenotypes prevalent for the 
borderline-common disorders, can be found in Fig.  5C 
and Additional File 1: Fig. S4. On the contrary, HPO 
terms such as intellectual disability, short stature, global 
developmental delay, hypertelorism and strabismus were 
reported more often for rare and ultra-rare disorders 
proportion-wise (Table 3). Analysis of top HPO terms for 

Fig. 4  Top 20 enriched Reactome pathways for the borderline-common, rare, and ultra-rare disorders. For the top 20 enriched Reactome pathways, 
6 enriched Reactome pathways (disease, developmental biology, signal transduction, immune system, cytokine signaling in immune system and 
extracellular matrix organization) were found for each of the disorder categories. In addition, diseases of signal transduction and muscle contraction 
were enriched for both the borderline-common and rare disorder category, and adaptive immune system, metabolism, generic transcription 
pathway, innate immune system and signaling by receptor tyrosine kinases were enriched for both the rare and ultra-rare disorder category within 
top 20

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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the borderline-common disorders with their top 10 co-
occurrent HPO terms can be found in Fig. 6.

In terms of enriched Reactome pathways, muscle 
contraction (R-HSA-397014) and cardiac conduction 
(R-HSA-5576891), both enriched in the three disorder 

Table 3  Overview of Human Phenotype Ontology (HPO) terms across the rare disorder spectrum

Here, we focus on the top 15 HPO terms for the rare disorder (RD) spectrum and borderline-common disorders of which 2430 out of 3,524 RDs and 131 out of 145 
RDs hold phenotypic information (equivalent to 69.0% and 90.3%), respectively. For the rare disorder category, 387 out of 412 RDs hold phenotypic information 
(93.9%), and for the ultra-rare disorder category, 1,912 out of 2,967 RDs hold phenotypic information (64.4%). The proportions within the borderline-common and rare 
disorder categories were compared with those within the ultra-rare disorder category
a Direction of change of proportions from borderline-common to ultra-rare (D)
b Proportion (prop) was calculated based on the number of RDs with phenotypic information within disorder category
c FDR-adjusted p < 0.05 was considered statistically significant; NS refers to not significant
d marks the HPO terms in top 15 within the disorder category

Category Overall Borderline-common Rare Ultra-rare Da

Measuresb Prop, % Prop, % Adj. p-valuec Prop, % Adj. p-valuec Prop, %

Top 15 HPO terms for the RD spectrum
Seizures 22.92 16.79d NS 23.77d NS 23.17d –

Intellectual disability 21.98 6.87 8.49 × 10–05 17.31d 2.85 × 10–02 23.95d ↑
Short stature 21.40 10.69d 1.14 × 10–02 17.31d NS 22.96d ↑
Global developmental delay 20.04 6.87 4.41 × 10–04 13.44d 1.02 × 10–03 22.28d ↑
Microcephaly 15.68 2.29 1.06 × 10–05 6.20 1.32 × 10–08 18.51d ↑
Hypertelorism 15.06 3.82 3.22 × 10–04 6.72 6.05 × 10–07 17.52d ↑
Scoliosis 14.94 8.40d NS 16.28d NS 15.12d –

Muscular hypotonia 13.09 6.87 NS 14.21d NS 13.28d –

Strabismus 12.76 4.58 1.75 × 10–02 9.82d NS 13.91d ↑
Micrognathia 12.67  4.58 1.05 × 10–02 5.17 1.69 × 10–06 14.75d ↑
Cryptorchidism 11.28 4.58 4.48 × 10–02 8.27 NS 12.34d ↑
Nystagmus 9.75 3.82 NS 9.82d NS 10.15d –

Hearing impairment 9.38 8.40d NS 13.18d 4.32 × 10–02 8.68 –

Cleft palate 9.26 6.87 NS 7.24 NS 9.83d –

Failure to thrive 8.97 3.82 NS 11.89d NS 8.73 –

Top 15 HPO terms for the borderline-
common disorders
Seizures 22.92d 16.79 NS 23.77d NS 23.17d –

Arthralgia 3.33 12.21 2.22 × 10–06 9.82d 7.92 × 10–12 1.41 ↓
Depressivity 2.72 10.69 1.06 × 10–05 6.98 2.88 × 10–07 1.31 ↓
Short stature 21.40d 10.69 1.14 × 10–02 17.31d NS 22.96d ↑
Abdominal pain 2.84 9.92 2.07 × 10–05 8.53 2.25 × 10–10 1.20 ↓
Fatigue 3.87 9.92 8.42 × 10–04 10.34d 1.13 × 10–09 2.14 –

Headache 2.35 9.92 4.11 × 10–05 4.65 1.68 × 10–03 1.36 ↓
Hypertension 3.74 9.92 1.36 × 10–03 8.79 7.87 × 10–07 2.30 ↓
Hepatomegaly 5.64 9.16 NS 11.11d 2.64 × 10–05 4.29 –

Renal insufficiency 3.13 9.16 8.77 × 10–04 7.49 2.62 × 10–06 1.83 ↓
Attention deficit hyperactivity disorder 3.00 8.40 1.17 × 10–02 4.13 NS 2.41 ↓
Constipation 3.54 8.40 4.88 × 10–02 8.27 2.98 × 10–06 2.25 ↓
Diarrhea 2.51 8.40 1.37 × 10–03 4.91 3.82 × 10–03 1.62 ↓
Hearing impairment 9.38d 8.40 NS 13.18d 4.32 × 10–02 8.68 –

Jaundice 1.85 8.40 2.34 × 10–05 4.91 7.99 × 10–06 0.78 ↓
Muscle weakness 4.20 8.40 3.34 × 10–02 8.79 5.18 × 10–05 2.98 ↓
Scoliosis 14.94d 8.40 NS 16.28d NS 15.12d –

Sleep disturbance 3.17 8.40 1.79 × 10–02 4.13 NS 2.62 ↓
Splenomegaly 4.16 8.40 4.02 × 10–02 8.01 6.32 × 10–04 3.09 ↓
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categories, had significantly more annotated disorder-
associated genes in relation to the total number of 
disorder-associated genes for the borderline-common 
disorder category as compared with the ultra-rare disor-
der category (Fig. 3C). When comparing the borderline-
common and ultra-rare disorder categories, this was also 
the case for the overlapping Reactome pathways, axon 
guidance (R-HSA-422475), and striated muscle contrac-
tion (R-HSA-390522; Additional File 1: Table  S4). Such 
differences were not observed for enriched Reactome 
pathways overlapping between the rare and ultra-rare 
disorder category (Additional File 1: Table S5).

Patients with borderline‑common disorders show more 
phenotypic variability
Variable expressivity has been described as “the series 
of signs and symptoms that can occur in different people 
with the same genetic condition” [40], and can confuse 
the diagnostic process. We developed the following two 
measures to reveal if the expressivity varied between 
the disorder categories: HPO termobligate/very frequent/HPO 
termtotal where a lower estimate indicates more variable 
expressivity, and HPO termoccasional/very rare/HPO termtotal 
where a higher estimate indicates more variable expres-
sivity (Table  2). The phenotypic expressivity for both 
the borderline-common and rare disorder category was 
significantly different from that of the ultra-rare disor-
der category. Here, the borderline-common disorders 
exhibited more variable phenotypic expressivity fol-
lowed by the rare disorder category and then the ultra-
rare disorder category (Table  2). Focusing solely on 
disorders with an oligogenic or multigenic/multifacto-
rial inheritance, we found similar estimates as those for 
the borderline-common and/or rare disorder category 
[reported as median (IQR), HPO termobligate/very frequent/
HPO termtotal = 0.26 (0.36); HPO termoccasional/very rare/
HPO termtotal = 0.40 (0.34)].

Even though clinical syndromes only comprise a small 
proportion of the RDs, more borderline-common dis-
orders belonged to this disorder type proportion-wise 
compared with the rare and ultra-rare disorder catego-
ries (Table  1). A clinical syndrome has been described 
by Johnson et al. [41] as a “constellation of clinical find-
ings caused by an underlying disease(s) that may or may 
not be accompanied by laboratory or imaging abnor-
malities”. To diagnose several clinical syndromes (e.g. 
acute lung injury [Orphacode:178320] [42], West syn-
drome [Orphacode:3451] [43] and TEMPI syndrome 
[Orphacode:284227] [44]), the practitioners only need 
the patient to present some features among the clinical 
diagnostic criteria—not all [45]. Interestingly, this might 
indicate that patients with the same clinical syndrome 
have slightly different clinical representations potentially 
coinciding with the higher proportion of borderline-
common disorders having variable phenotypic expres-
sivity. As only few clinical syndromes have associated 
genes (18.2% across the spectrum), we assume that those 
clinical syndromes are indeed challenging to resolve 
genetically.

Discussion
Focusing on rare diseases in children, an average diag-
nostic rate of 42% has been reported when using trio-
based whole-genome sequencing [4–6]. Considered the 
relatively low diagnostic rate, there is still a long way to go 
to ensure diagnostic success for those living with a rare 
disease. To improve the diagnostic success, we believe 
that we need to better understand the entire spectrum 
of rare disorders (acquired and congenital disorders) to 
tailor our diagnostic computational pipelines. There-
fore, we characterized the RD spectrum using the disor-
der categories, borderline-common, rare, and ultra-rare. 
Searching through the literature, we were unable to find 
discussion of borderline-common disorders. Ultra-rare 

(See figure on next page.)
Fig. 5  Human Phenotype Ontology (HPO) terms and co-occurrence profiles for the rare disorder spectrum. A The Venn diagrams illustrate 
similarities and differences in HPO terms across the disorder categories. As the number of rare disorders (RDs) categorized to a specific disorder 
category increase with decreasing prevalence, we expected to find more HPO terms for the ultra-rare disorder category. Therefore, we provided 
a Venn diagram for the top 50 HPO terms, in addition to the one representing all HPO terms. For the top 50 HPO terms, the disorder categories 
had 8 HPO terms in common, namely seizures, short stature, hearing impairment, scoliosis, cleft palate, global developmental delay, intellectual 
disability and muscular hypotonia. The rare disorder category shared a similar number of HPO terms with both the borderline-common and 
ultra-rare disorder category, yet these HPO terms did not overlap between the latter disorder categories. Focusing on all HPO terms, more HPO 
terms overlapped between the rare and ultra-rare disorder category compared with the borderline-common and ultra-rare disorder category. As 
differences between disorder categories appeared (e.g., multiple HPO terms unique to the disorder category), we further dissected the top findings 
(presented in Table 3). B Co-occurrence of the top 15 HPO terms within the RD spectrum (as shown in Table 3) with other HPO terms selected based 
on high relative co-occurrence. The HPO terms co-occurred in 3 to 239 RDs depending on the combination. C Co-occurrence of the top 15 HPO 
terms within the borderline-common disorder category (as represented in Table 3) with selected HPO terms based on high relative co-occurrence. 
Here, we decided to exclude the top 15 HPO terms, hearing impairment, seizures, short stature, and scoliosis, as they were also represented in 
Fig. 3B. Notably less co-occurrence between HPO terms was observed within this group (ranged from 1 to 60 RDs). Larger representations of this 
figure can be found in Additional File 1: Fig. S2-S3
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Fig. 5  (See legend on previous page.)



Page 13 of 18Frederiksen et al. Orphanet Journal of Rare Diseases           (2022) 17:76 	

disorders, on the other hand, have been mentioned using 
various terms such as ultra-orphan, ultra-rare, extremely 
rare and very rare [46–48]. Based on our findings, bor-
derline-common disorders can be described as (1) more 
often being inherited in a multigenic/multifactorial 
manner, (2) having more variable phenotypic expres-
sivity, and (3) to some degree being distinct from the 

rare and ultra-rare disorders phenotypically and patho-
physiologically. For example, some phenotypes are more 
often observed for borderline-common disorders than 
for ultra-rare disorders, and vice versa. There also seem 
to be a difference in the involvement of biological path-
ways. Interestingly, Boycott et al. [49] highlighted in 2017 
that ultra-rare and unrecognized genetic diseases are 

Fig. 6  Occurrent Human Phenotype Ontology (HPO) terms for borderline-common disorders, and top 10 co-occurrent HPO terms. The following 
HPO terms prevalent for the borderline-common disorders were selected: Abdominal pain, arthralgia, fatigue, hypertension, seizures, short stature, 
depressivity, and headache (as presented in Table 3; highlighted using the selected color palette). For each of these HPO terms, we selected the 
most co-occurring HPO terms in the rare disorder (RD) spectrum (top 10, marked as grey) based on the number of RD that exhibit this pairwise 
combination of HPO terms. For example, seizures and global developmental delay can be observed for 234 RDs whereas seizures and hypertension 
only can be observed for 19 RDs. The more RDs exhibiting a certain combination of HPO terms, the thicker the line
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contributors to bottlenecks in gene-discovery pipelines. 
Our study explores the possibility of borderline-common 
disorders being contributors to bottlenecks as well.

With regard to the rarity of disorders, we found more 
ultra-rare disorders than rare and borderline-common 
disorders. This agrees with Hennekam who reported 
that “as a group they form a considerable part of the total 
group of persons with rare disorders in the European 
Community” [50]. Nevertheless, this only collectively 
translates to 4.1% of individuals in a fictive cohort of RD 
patients living with an ultra-rare disorder (Fig.  2). The 
ultra-rare disorders were primarily associated with a sin-
gle gene and inherited in either an autosomal recessive 
(42.5%) or autosomal dominant (25.5%) pattern. Another 
characteristic of ultra-rare disorders was that the pheno-
typic variability was less pronounced. This makes patients 
belonging to this category suitable for most diagnostic 
computational pipelines, and thus the diagnostic rate 
for this group of patients might be higher in comparison 
with those living with borderline-common disorders.

Implication of multiple genes, reduced penetrance, and 
variable expressivity is expected for the more common 
disorders within the RD spectrum, and are commonly not 
accounted for by traditional computational pipelines. We 
believe that applying individual patient-tailored meth-
ods, that account for more complex genetic and pheno-
typic scenarios, will improve those diagnostic rates. We 
know that incomplete penetrance and variable expressiv-
ity affect the correlation between the genotype and phe-
notype [11], which complicates the diagnostic process, 
especially when diagnosing more common RDs. Here, 
we refer to those RDs that are more common on a global 
scale (not to be confused with RDs that have become 
common in specific population/region). We observed 
more variable phenotypic representations for disorders 
within the borderline-common disorder category using 
our newly constructed phenotypic expressivity meas-
ures (based on the HPO terms and their occurrence). 
This most likely coincide with our finding that a higher 
proportion of borderline-common disorders are inher-
ited in a multigenic/multifactorial pattern. You might 
ask, ‘but why do you care about borderline-common dis-
orders when they only comprise 4.1% of RDs within the 
spectrum?’ By considering the number of RDs together 
with the point prevalence of those disorders, the majority 
of individuals with a disorder belonging to the RD spec-
trum in a fictive cohort most likely fall into the border-
line-common category (more than 90%; Fig. 2). So, due to 
the construct of today’s pipelines, the higher prevalence 
of borderline-common disorders, combined with their 
more complex genetic and phenotypic scenarios, might 
result in more of these patients ending up in the ‘difficult-
to-diagnose’ or ‘undiagnosed’ category. This also seems 

to go hand in hand with our findings that one RD within 
the rare disorder category is caused by oligogenic inher-
itance, namely Bardet-Biedl syndrome [Orphacode:110]. 
Several studies are available which focus on the inherit-
ance patterns of this syndrome, including oligogenic 
inheritance (e.g. triallelic inheritance has been observed) 
[51]. In this context, oligogenic inheritance was defined 
as occurring “when specific alleles at more than one locus 
affect a genetic trait by causing and/or modifying the 
severity and range of a phenotype” [51]. We expect that 
the number of RDs, linked to this inheritance type, will 
increase over time due to the exploration of more com-
plex genetic scenarios. Moreover, as the number of dis-
order-associated genes increase with decreasing rarity 
focus on susceptibility factors and modifiers in future 
pipelines might help us to better understand underlying 
genetic architecture and why variable phenotypic expres-
sivity can be observed for a wide range of rare disorders. 
This was discussed by Rahit and Tarailo-Graovac in 2020 
[21].

Not only does the phenotypic expressivity tend to vary 
across RD spectrum, but the same happens with the pal-
ette of phenotypes too. When assessing the phenotypes 
associated with the borderline-common disorders, they 
tended to differ from those found for the rare and ultra-
rare disorders. When interpreting this finding, one needs 
to take into consideration that some patients with the 
rarer disorders might exhibit communication difficul-
ties, and so, might be unable to express if they are feel-
ing depressed or having a headache (phenotypes more 
common among the borderline-common disorders). On 
the other hand, these findings could also be indicative 
of variable essentiality of mutated genes and/or implica-
tion of variable developmental phases. As we have not 
been able to find any literature on this research area, we 
have not compared it with current knowledge. Neverthe-
less, it is recognized that use of high-dimensional phe-
notypic profiles can be one way to improve diagnostic 
success. For example, Turro and colleagues were able to 
genetically diagnose 16.1% of the patients (n = 7065) with 
extensive phenotypic profiles [52]. Interestingly, in the 
initial phase of this study, we tried to perform a cluster 
analysis focusing on the HPO terms to learn more about 
the RDs in the spectrum (clustering RDs based on their 
phenotypic profile). This turned out to be more challeng-
ing than expected. For example, only a considerably small 
variation between RDs was explained for each dimen-
sion (clustering of multidimensional data). It could indi-
cate presence of high complexity for the disorders within 
the RD spectrum and thus a combination of phenotypes, 
genes and biological pathways might be beneficial. In 
2021, the RD map was made publicly available, which 



Page 15 of 18Frederiksen et al. Orphanet Journal of Rare Diseases           (2022) 17:76 	

utilizes a combination of HPO and GO terms to con-
struct their network of rare diseases [53].

Discovery of genes associated with RDs has steadily 
improved in the years since next-generation sequencing 
became available [1]. As our study is based on informa-
tion stored in publicly available databases, we explored 
what is already known about RDs and disorder-associ-
ated genes (ranging from disorder-causing to modifying 
genes). Our findings are of direct relevance to undiag-
nosed RD patients that fall into an already established 
diagnosis (‘the diagnosis phase’). Yet, by extrapolating the 
findings within the entire RD spectrum, we believe our 
study to also have relevance for patients falling outside 
an established diagnosis (‘the discovery phase’). When 
searching for underlying causes of novel rare disorders, 
one might find that mutations causing these disorders 
are located in genes belonging to the same gene–gene/
protein–protein networks or biological pathways as the 
mutated genes known to cause already known disorders 
with similar phenotypic representations; this trend has 
been observed in the past [54].

We expect that tailoring of our in-house computational 
pipeline to account for more complex genetic and phe-
notypic scenarios might help to elucidate the underlying 
cause of disease in the Indigenous patients enrolled in 
Silent Genomes who remain undiagnosed after our level 
1 analysis (‘state-of-the-field’ approaches looking mainly 
for single genes defects in the form of SNVs and some 
types of structural variants). In the case that the level 1 
analysis fails, the patients are moved to level 2 analysis 
where we create and utilize novel approaches. This will 
allow for applying different, specifically built, and indi-
vidual patient-tailored methods in cases for which, we 
expect that variants from multiple genes are involved in 
the disease etiology or reduced penetrance and variable 
expressivity is suspected (Silent Genomes is currently not 
powered to investigate more complex genetic and pheno-
typic scenarios).

Conclusions
Our initial goal was to enable the answering of the follow-
ing question: How can we distinguish between the disorder 
categories, borderline-common, rare, and ultra-rare? We 
learned that the disorder categories can be described by a 
wide range of factors, including disorder types, linearisa-
tion parents, biological pathways, and phenotypes, which 
we now can use to categorize undiagnosed patients into 
a specific disorder category. For example, if an undiag-
nosed patient with a RD gets assigned to the borderline-
common disorder category, one might suspect that more 
than one gene could be involved in the etiology of the 
disorder, and thus the pipeline chosen should be able to 

address more complex genetic scenarios. So, we can use 
the findings presented in the current study to choose the 
most appropriate statistical methodology for the patient 
in question to improve diagnostic success but also to 
learn more about specific populations. Finally, under-
standing of the involvement of pathophysiological mech-
anisms for each of the disorder categories can potentially 
help us to pinpoint what genes might be causative for the 
undiagnosed patient in question and it could be useful 
in narrowing down the list of genetic variants outputted 
from our computational pipeline.

Methods
In this study, we characterized the RD spectrum in silico 
by conducting bioinformatics analyses focusing specifi-
cally on Homo Sapiens, and the following disorder cat-
egories: Borderline-common, rare and ultra-rare.

Data extraction from Orphanet and filtering
Data were extracted from Orphadata (i.e., publicly 
available datasets underlying the rare disease database 
Orphanet) on June 1, 2020, which included information 
about epidemiology, associated genes and phenotypes, 
natural history and linearisation of disorders (monohi-
erarchical view of classified disorders referred to as lin-
earisation parents) [37]. The data was processed using the 
statistical software R (version 4.0.2). After combining the 
separate datasets, twelve variables of interest were avail-
able (names, synonyms, Orphacodes, prevalence, disor-
der groups, disorder types, linearisation parents, type of 
inheritance, interval average age of onset, interval aver-
age age of death, associated Human Phenotype Ontology 
(HPO) terms [38], and associated genes). The reported 
type(s) of inheritance was based on the literature and the 
Orphanet encyclopedia (e.g. expert reviews for creation 
and updating of disorder summary texts) and associated 
genes on available peer-reviewed publications. An over-
view of the data availability across disorder types can be 
found in Additional File 1: Table  S1. Subsequently, RDs 
were filtered as follows: (1) RDs with known prevalence 
were selected, (2) RDs categorized as ‘group of disor-
ders’ and ‘subtype of disorders’ were excluded, and (3) 
RDs belonging to one of the linearisation parents ‘rare 
disorder due to toxic effects’, ‘rare infectious disease’ or 
‘rare neoplastic disease’, were excluded. Further details 
on certain inclusion and exclusion criteria can be found 
in Nguengang Wakap et al. (2020). Finally, only RDs with 
known worldwide and/or continent point prevalence 
were included in the study (Additional File 1: Fig. S1).

Assigning point prevalence and disorder category
To provide additional context, measures of disorder 
frequency were reported as point prevalence, birth 
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prevalence and annual incidence in Orphadata [37]. 
Regarding specific categories, six prevalence categories 
were available, namely > 1/1,000, 6–9/10,000, 1–5/10,000, 
1–9/100,000, 1–9/1,000,000 and < 1/1,000,000. As most 
sources investigated point prevalence, this was the type 
of disease frequency we decided to focus on in our 
study. When assigning prevalence categories to the RDs, 
worldwide point prevalence was prioritized over con-
tinent point prevalence. For those RDs with unknown 
worldwide point prevalence, continent point prevalence 
was used and the prevalence category which had been 
reported most times was assigned. If multiple preva-
lence categories were reported an equal number of times 
(this only occurred for 4 RDs), we assigned the preva-
lence category reported in the user-friendly online ver-
sion, Orphanet [36]. Afterwards, the RDs were assigned 
to one of the following disorder categories based on 
their point prevalence: Borderline-common (6–9/10,000 
and 1–5/10,000), rare (1–9/100,000 and 1–9/1,000,000) 
and ultra-rare (< 1/1,000,000) (Additional File 1: Fig. S1; 
by using broad point prevalence categories, we do not 
account for the variability within the disorder catego-
ries). To gain further insight into the frequency at which 
the disorder categories can be observed in a population, 
we created a fictive cohort consisting of 500 individu-
als. The proportions at which the disorder categories can 
be observed in a population were calculated as follows: 
Point prevalence (midpoint) * individuals in fictive popu-
lation * number of RDs * 100. It is also important to con-
sider that, on one hand, the ultra-rare disorder category 
might result in more precise estimates due to the con-
siderable number of RDs that falls into this category. On 
the other hand, more patients have a borderline-common 
disorder which could improve the estimate precision too.

Phenotypes and genes across the rare disorder spectrum
RDs with HPO information were selected. The occur-
rence of the HPO terms was reported as follows in 
Orphadata: ‘Obligate (100%)’, ‘very frequent (99–80%)’, 
‘frequent (79–30%)’, ‘occasional (29–5%)’, ‘very rare 
(< 4–1%)’ and ‘excluded (0%)’. The occurrence category 
‘excluded (0%)’ was omitted. In addition to counting HPO 
terms with certain occurrences, following ratios were cal-
culated for each RD in the spectrum: (1) Ratio between 
the number of obligate and very frequent HPO terms and 
the number of all HPO terms, and (2) ratio between the 
number of occasional and very rare HPO terms and the 
number of all HPO terms for the RD in question. The 
ratios were used as measures of expressivity, “the phe-
nomenon of differing clinical features or phenotype among 
individuals carrying the same gene allele or genotype” 
[55]. Moreover, we constructed a co-occurrence matrix 

for HPO terms across the RD spectrum revealing for 
how many RDs each pairwise combination of HPO terms 
co-occur. Subsets of the co-occurrence matrix (selected 
based on occurrent HPO terms within the RD spectrum 
and borderline-common disorder category) were visual-
ized using heatmaps with dendrograms by utilizing the 
gplots R package [56]. Moreover, the top HPO terms 
for the borderline-common disorders and their most 
co-occurrent HPO terms (top 10) were selected. The co-
occurrence between the selected HPO terms were visual-
ized using the circlize R package [57].

For each list of associated genes (from the Orphadata) 
within the disorder categories, we conducted enrichment 
analyses of Reactome pathways (version 65; investigates 
if the genes found for a specific disorder category are 
enriched for any Reactome pathway) using the PANTHER 
[Protein ANalysis THrough Evolutionary Relationships] 
database [58, 59]. The enrichment analyses were con-
ducted using Fisher’s exact tests and the computed p-val-
ues were adjusted using the false discovery rate (FDR) 
method. p < 0.05 was considered statistically significant. 
Additionally, we only considered enriched terms with at 
least 10 annotated genes (or gene products) associated 
with the disorder category as being truly enriched.

Significance testing of proportions and distributions
For the variables of interest, we measured proportions, 
medians, and interquartile ranges (IQR). We tested 
whether the proportions and distributions for the bor-
derline-common and rare disorder categories differed 
from the ultra-rare disorder category. As the sample size 
for some variables was small, Fisher’s exact tests were 
used to test differences in proportions, and two-tailed 
p-values were computed and adjusted for multiple testing 
(FDR < 0.05). For the continuous variables, we tested the 
null hypothesis (H0: the distribution parameters are the 
same in each group) against the alternative hypothesis 
(HA: the distribution parameters are not the same in at 
least one group) to reveal if there was a significant differ-
ence between the mean ranks of the disorder categories, 
borderline-common, rare and ultra-rare. This was done 
using the Kruskal–Wallis Rank Sum test. If significant 
differences were observed between disorder categories, 
pairwise comparisons were conducted using Pairwise 
Wilcoxon Rank Sum tests. The computed p-values were 
adjusted for multiple testing using the FDR method, as 
for the proportions.

An overview of the methodological workflow can be 
found in Additional File 1: Fig. S2.
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